Exercise 9

Suppose $y=\sqrt{2 x+1}$, where x and y are functions of t.
(a) If $d x / d t=3$, find $d y / d t$ when $x=4$.
(b) If $d y / d t=5$, find $d x / d t$ when $x=12$.

Solution

Find the derivative of y with respect to t by using the chain rule.

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{d}{d t} \sqrt{2 x+1} \\
& =\frac{1}{2}(2 x+1)^{-1 / 2} \cdot \frac{d}{d t}(2 x+1) \\
& =\frac{1}{2}(2 x+1)^{-1 / 2} \cdot\left(2 \frac{d x}{d t}\right) \\
& =\frac{1}{\sqrt{2 x+1}} \frac{d x}{d t}
\end{aligned}
$$

Part (a)

When $d x / d t=3$ and $x=4$,

$$
\left.\frac{d y}{d t}\right|_{x=4}=\frac{1}{\sqrt{2(4)+1}}(3)=1 .
$$

Part (b)

Solve the equation for $d x / d t$ by multiplying both sides by $\sqrt{2 x+1}$.

$$
\frac{d x}{d t}=\frac{d y}{d t} \sqrt{2 x+1}
$$

When $d y / d t=5$ and $x=12$,

$$
\left.\frac{d x}{d t}\right|_{x=12}=(5) \sqrt{2(12)+1}=25 .
$$

